Treizième problème de Hilbert

Le treizième problème de Hilbert est l'un des vingt-trois problèmes de Hilbert, posés par David Hilbert en 1900. Il s'agissait d'un problème de nomographie : montrer l'impossibilité, pour l'équation générale du septième degré

x 7 + a x 3 + b x 2 + c x + 1 = 0 , {\displaystyle x^{7}+ax^{3}+bx^{2}+cx+1=0,}

d'exprimer la solution (vue comme fonction des trois paramètres a, b et c) comme composée d'un nombre fini de fonctions continues de seulement deux variables.

Vladimir Arnold a réfuté cette conjecture en 1957 (à 19 ans) d'après les travaux de son maître Andreï Kolmogorov, en démontrant plus généralement que toutes les fonctions continues peuvent s'exprimer par composition à partir d'un nombre fini de fonctions continues de deux variables. Plus précisément, il existe n(2n + 1) fonctions continues universelles Φij (de [0, 1] dans [0, 1]) telles que pour toute fonction continue f :[0, 1]n → [0, 1], il existe 2n + 1 fonctions continues gj :[0, 1] → [0, 1] telles que f ( x 1 , , x n ) = j = 1 2 n + 1 g j ( i = 1 n Φ i j ( x i ) ) . {\displaystyle f(x_{1},\dots ,x_{n})=\sum _{j=1}^{2n+1}g_{j}\left(\sum _{i=1}^{n}\Phi _{ij}(x_{i})\right).}

Kolmogorov avait montré, un an auparavant, que des fonctions de 3 variables suffisaient et Arnold a donc amélioré ce 3 en un 2. Arnold a aussi étudié la question analogue pour des fonctions algébriques, en collaboration avec Goro Shimura[1].

Notes et références

  1. (en) V. I. Arnold et G. Shimura, « Superposition of algebraic functions », dans Felix E. Browder, Mathematical Developments Arising from Hilbert Problems, AMS, coll. « Proc. Symp. Pure Math. » (no 28), (ISBN 978-0-821-81428-4), p. 45-46.
  • (en) G. G. Lorentz, Approximation of Functions, , chap. 11
  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Hilbert's thirteenth problem » (voir la liste des auteurs).
v · m
  • icône décorative Portail des mathématiques