PKS 1148-001

PKS 1148-001
PKS 1148-001 as observed by SDSS
Observation data (J2000.0 epoch)
ConstellationVirgo
Right ascension11h 50m 43.871s
Declination-00d 23m 54.20s
Redshift1.979562
Heliocentric radial velocity593,458 km/s
Distance10.221 Gly (light travel time distance)
Apparent magnitude (V)0.063
Apparent magnitude (B)0.084
Surface brightness17.1
Characteristics
TypeOpt var, RLQ
Other designations
UM 458, 4C -00.47, PGC 37034, QUEST 042860, MRC 1148-001, MG1 J115044-0024, OM -480, TXS 1148-001, 1RXS J115044.2-002349, CoNFIG 113

PKS 1148-001 also known as UM 458 and 4C -00.47, is a quasar located in the constellation of Virgo. Its redshift is 1.979, estimating the object to be located 10.2 billion light-years from Earth.[1]

Characteristics

PKS 1148-001 hosts an active galactic nucleus (AGN).[2] It is classified as a blazar,[3][4] a type of active galaxy producing an astrophysical jet, with its temperature extending up to ~2x10^11 K that is excess of inverse Compton limit and corresponding to large excess of particle energy over magnetic energy.[5]

Moreover, PKS 1148-001 is also a radio-loud quasar,[6] observed by researchers who presented results on quasars of the same type, from 15 GHz Very Long Baseline Array (VLBA) data obtained between August 31, 1994, and December 26, 2016. They found the jet in PKS 1148-001 shows evidence of accelerated motion at the >3σ level. The jet has a Gaussian brightness temperature of 4.1( ± 0.6) × 1010 K, suggesting its jet cores are at or below equipartition between the particle and magnetic field energy in median state.[7] With slow speed patterns lying within 4 pc (100 pc deprojected) of its core feature, the jet has unbeamed 15 GHz luminosity found above ∼1024.5 W Hz−1, a space density of 261 ± 19 Gpc−3 and has counter jet-features.[8] These values are consistent with FR II class radio galaxies.[9]

The host galaxy of PKS 1148-001 is a submillimeter-bright giant early-type galaxy.[10] A starburst galaxy driven by interstellar medium pressure balance,[11] it is found to host a massive molecular gas reservoir with dust masses of Md ∼several × 107 M⊙ and 12CO(2–1) line emission distributions, according to researchers who found molecular gas disks.[12] They also found the host galaxy contains a growing stellar disk, indicating the sustainment the cold gas in interstellar medium and inside-out growth in an isolated environments with a mild correlation of Spearman's ρ = 0.30.[13] Moreover, the host galaxy contains pulsar wind nebula features, likely caused by numerous supernovae.[14]

Further observations

PKS 1148-001 is known to have extensive polarization, observed by researchers who presented polarization images of 9 radio-loud quasars from the Palomar-Green (PG) 'blazar' sample. Its core displays magnetic B- fields transverse to and fro, and jets displaying fields aligned with the jet direction. The hotspots in PKS 1148–001, either show transverse B-fields signifying B-field compression at terminal shocks or more complex structures. It also displays hybrid FRI/FRII radio morphologies, indicating the activity in its AGN has restarted thus resulting in more powerful radio jets.[15][16]

The Green Bank Telescope also found H I 21 cm absorption in PKS 1148–001 as well. Through researchers found cosmological mass density of neutral gas is ΩH I with mean spin temperature of Ts/f = 175 K, they found no new absorption lines. This supports a mild evolution in ΩH I taking place over the last 11 billion years which is consistent with other methods measuring ΩH I.[17]

PKS 1148-001 was also observed by researchers from Lick Observatory and Anglo-Australian Observatory. They found out it contains a dampened Lyα absorber with column densities of NHI>=2×1020 atoms cm−2 proving there is a correlation of neutral gas evolving along with its redshift.[18]

PKS 1148-001 is one of the radio-detected quasars with a redshift less than 2.0, applied on the Hubble diagram. Through correction of V magnitudes using an extinction correction equal to -3.3 times the delta (B-V) reddening, based on a bolometric extinction of 0.35 magnitude and applied corrections sharpening the envelope, PKS 1148-001 belongs to a subclass of the most luminous quasars.[19][20]

Broad absorption-line quasar

PKS 1148-001 is among 3-10 percent of the moderate-to-high redshift quasars to contain a broad absorption-line. Looking at its absorption trough, the quasar shows a variety of structure and an outflow velocity near 65,000 km/s, although an outflow velocity of 0-20,000 km/s is more typical. The C IV emission in PKS 1148-001 contains a smaller peak intensity.[21]

Core polarization vector

The source of PKS 1148-001 is found to be strong with a more or less uniformly distribution with a relative orientation of the core polarization vector at λ6 cm between 0° and 90°, according to researchers who investigated dependence of the angle of φ, between the polarization vector and the radio axis, on the fraction of emission from the core, fc.[22]

Radio source

PKS 1148-001 contains a flat-spectrum radio source[23][24] with high frequencies observed by the Australia Telescope.[25] The source is also found to be compact and variable.[26][27] Its three components have sizes of 0.0015, 0.01 and 0.1 arcsec and a synchrotron self-absorption below the frequencies about 1.5, 0.4 and 0.05 GHz that is consistent with the total flux density spectrum observed at wavelengths.[28][29]

The radio source is also of extragalactic origin.[30][31] Japanese scientists who studied the source in 1979, found it has a correlation coefficient of r=0.60 with the z-dependence of RM interpreted by its uniform intergalactic magnetic field of 2.7 × 10−9 G running in the direction of l=100°, b=15° in space up to z=2.[32] According to researchers from ANRAO/Parkes, NRAO/Greenbank, and MPIfR/Bonn, the source is the brightest at 2.7 GHz.[33]

A further deeper analysis was conducted on the radio source. From the results, researchers noted the thermal electron density of the radio emission zone in PKS 1148–001, is found varying from 1 to 10−5cm−3 for sources in the range 1 - 103pc. This is a magnitude smaller by several orders in comparison with the density of optical emission line regions. Also, the compact source is ≤108 when calculating the ratio between density of relativistic and thermal electrons.[34]

Possible cluster member?

PKS 1148-001 is known to interact with dense intracluster media. As observed during the Very Large Array runs on more than 120 quasars on November 23, 1980, and April 23, 1981, the source in PKS 1148-001 is either distorted or 'bent' triple, which its distortions observed may not be caused by external media interactions.[35]

Black hole

The supermassive black hole inside PKS 1148-001 is found to grow at ∼3× faster compared to galaxies with present-day black hole mass ratio.[10] According to researchers, the black hole is found to be X-ray emitting presenting a power-law slope of 1.39. This is consistent with the jet-dominated X-ray model, but might be partly due to the relativistic beaming effect.[36]

References

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-12.
  2. ^ Anderson, Scott F.; Margon, Bruce; Voges, Wolfgang; Plotkin, Richard M.; Syphers, David; Haggard, Daryl; Collinge, Matthew J.; Meyer, Jillian; Strauss, Michael A.; Agüeros, Marcel A.; Hall, Patrick B.; Homer, L.; Ivezić, Željko; Richards, Gordon T.; Richmond, Michael W. (2007-01-01). "A Large, Uniform Sample of X-Ray-emitting Active Galactic Nuclei from the ROSAT All Sky and Sloan Digital Sky Surveys: The Data Release 5 Sample". The Astronomical Journal. 133: 313–329. doi:10.1086/509765. ISSN 0004-6256.
  3. ^ Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. (2009-02-01). "Roma-BZCAT: a multifrequency catalogue of blazars". Astronomy and Astrophysics. 495: 691–696. doi:10.1051/0004-6361:200810161. ISSN 0004-6361.
  4. ^ Chand, Krishan; Gopal-Krishna (2022-10-01). "Persistence of the blazar state in flat-spectrum radio quasars". Monthly Notices of the Royal Astronomical Society. 516: L18–L23. doi:10.1093/mnrasl/slac066. ISSN 0035-8711.
  5. ^ Kellermann, K. I.; Kovalev, Y. Y.; Lister, M. L.; Homan, D. C.; Kadler, M.; Cohen, M. H.; Ros, E.; Zensus, J. A.; Vermeulen, R. C.; Aller, M. F.; Aller, H. D. (2007-10-10). "Doppler Boosting, Superluminal Motion, and the Kinematics of AGN Jets". Astrophysics and Space Science. 311 (1–3): 231–239. doi:10.1007/s10509-007-9622-5. ISSN 0004-640X.
  6. ^ Lister, M. L.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2021-12-01). "Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies". The Astrophysical Journal. 923: 30. doi:10.3847/1538-4357/ac230f. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Homan, D. C.; Cohen, M. H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Lister, M. L.; Popkov, A. V.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2021-12-01). "MOJAVE. XIX. Brightness Temperatures and Intrinsic Properties of Blazar Jets". The Astrophysical Journal. 923: 67. doi:10.3847/1538-4357/ac27af. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Lister, M. L.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2023-05-01). "Erratum: "Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies" (2021, ApJ, 923, 30)". The Astrophysical Journal. 949 (1): 34. doi:10.3847/1538-4357/accf0c. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Lister, M. L.; Homan, D. C.; Hovatta, T.; Kellermann, K. I.; Kiehlmann, S.; Kovalev, Y. Y.; Max-Moerbeck, W.; Pushkarev, A. B.; Readhead, A. C. S.; Ros, E.; Savolainen, T. (2019-03-01). "MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars". The Astrophysical Journal. 874: 43. doi:10.3847/1538-4357/ab08ee. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ a b Fu, Hai; Isbell, Jacob; Casey, Caitlin M.; Cooray, Asantha; Prochaska, J. Xavier; Scoville, Nick; Stockton, Alan (2017-08-01). "The Circumgalactic Medium of Submillimeter Galaxies. II. Unobscured QSOs within Dusty Starbursts and QSO Sightlines with Impact Parameters below 100 kpc". The Astrophysical Journal. 844: 123. doi:10.3847/1538-4357/aa7c63. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Molina, Juan; Ibar, Edo; Godoy, Nicolás; Escala, Andrés; Michiyama, Tomonari; Cheng, Cheng; Hughes, Thomas M.; Baes, Maarten; Xue, Yongquan; Michałowski, Michał J.; van der Werf, Paul; Jiang, Xue-Jian (2020-11-01). "VALES. VII. Molecular and ionized gas properties in the pressure balanced interstellar medium of starburst galaxies at z ∼ 0.15". Astronomy and Astrophysics. 643: A78. doi:10.1051/0004-6361/202039008. ISSN 0004-6361.
  12. ^ Sansom, A. E.; Glass, D. H. W.; Bendo, G. J.; Davis, T. A.; Rowlands, K.; Bourne, N.; Dunne, L.; Eales, S.; Kaviraj, S.; Popescu, C.; Smith, M.; Viaene, S. (2019-02-01). "ALMA observations of massive molecular gas reservoirs in dusty early-type galaxies". Monthly Notices of the Royal Astronomical Society. 482: 4617–4629. doi:10.1093/mnras/sty3021. ISSN 0035-8711.
  13. ^ Padave, Mansi; Borthakur, Sanchayeeta; Gim, Hansung B.; Thilker, David; Jansen, Rolf A.; Monkiewicz, Jacqueline; Kennicutt, Robert C.; Kauffmann, Guinevere; Fox, Andrew J.; Momjian, Emmanuel; Heckman, Timothy (2024-01-01). "DIISC-III. Signatures of Stellar Disk Growth in Nearby Galaxies". The Astrophysical Journal. 960: 24. doi:10.3847/1538-4357/ad029b. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ Dong, Dillon Z.; Hallinan, Gregg (2023-05-01). "A Flat-spectrum Radio Transient at 122 Mpc Consistent with an Emerging Pulsar Wind Nebula". The Astrophysical Journal. 948: 119. doi:10.3847/1538-4357/acc06c. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Baghel, Janhavi; Kharb, P.; Silpa; Ho, Luis C.; Harrison, C. M. (2023-02-01). "A polarimetric study of nine PG quasars with the VLA". Monthly Notices of the Royal Astronomical Society. 519: 2773–2795. doi:10.1093/mnras/stac3691. ISSN 0035-8711.
  16. ^ Nandi, S.; Saikia, D. J.; Roy, R.; Dabhade, P.; Wadadekar, Y.; Larsson, J.; Baes, M.; Chandola, H. C.; Singh, M. (2019-07-01). "A low-frequency study of recently identified double-double radio galaxies". Monthly Notices of the Royal Astronomical Society. 486: 5158–5170. doi:10.1093/mnras/stz1184. ISSN 0035-8711.
  17. ^ Grasha, Kathryn; Darling, Jeremy; Leroy, Adam K.; Bolatto, Alberto D. (2020-10-01). "The evolution of neutral hydrogen over the past 11 Gyr via H I 21 cm absorption". Monthly Notices of the Royal Astronomical Society. 498: 883–898. doi:10.1093/mnras/staa2521. ISSN 0035-8711.
  18. ^ Storrie-Lombardi, Lisa J.; Wolfe, Arthur M. (2000-11-01). "Surveys for z>3 Damped Lyα Absorption Systems: The Evolution of Neutral Gas". The Astrophysical Journal. 543: 552–576. doi:10.1086/317138. ISSN 0004-637X.
  19. ^ Teerikorpi, P. (1981-05-01). "On the Hubble diagram for quasars as a corrected for galactic absorption: evidence for a separate class of the most luminous quasars". Astronomy and Astrophysics. 98: 309–315. ISSN 0004-6361.
  20. ^ Pica, A. J.; Smith, A. G. (1983-09-01). "Optical variability, absolute luminosity, and the Hubble diagram for QSOs". The Astrophysical Journal. 272: 11–25. doi:10.1086/161257. ISSN 0004-637X.
  21. ^ Turnshek, D. A. (1984-05-01). "Properties of the broad absorption-line QSOs". The Astrophysical Journal. 280: 51–65. doi:10.1086/161967. ISSN 0004-637X.
  22. ^ Saikia, D. J.; Shastri, P. (1984-11-01). "Relative orientation of core polarization at lambda 6 CM and the overall radio axes of quasars". Monthly Notices of the Royal Astronomical Society. 211: 47–56. doi:10.1093/mnras/211.1.47. ISSN 0035-8711.
  23. ^ Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N. (2007-07-01). "CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources". The Astrophysical Journal Supplement Series. 171: 61–71. doi:10.1086/513742. ISSN 0067-0049.
  24. ^ Venugopal, V. R.; Swarup, G. (1979-12-01). "Structure of radio source PKS 1148-00". Bulletin of the Astronomical Society of India. 7: 116. ISSN 0304-9523.
  25. ^ Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Ekers, Ronald D.; Bannister, Keith W.; Chhetri, Rajan; Hancock, Paul J.; Johnston, Helen M.; Massardi, Marcella; Murphy, Tara (2011-11-01). "Optical properties of high-frequency radio sources from the Australia Telescope 20 GHz (AT20G) Survey". Monthly Notices of the Royal Astronomical Society. 417: 2651–2675. doi:10.1111/j.1365-2966.2011.19427.x. ISSN 0035-8711.
  26. ^ Kellermann, K. I.; Pauliny-Toth, I. I. K. (1968-01-01). "Variable Radio Sources". Annual Review of Astronomy and Astrophysics. 6: 417. doi:10.1146/annurev.aa.06.090168.002221. ISSN 0066-4146.
  27. ^ Pica, A. J.; Pollock, J. T.; Smith, A. G.; Leacock, R. J.; Edwards, P. L.; Scott, R. L. (1980-11-01). "Long-term optical behaviour of 114 extragalactic sources". The Astronomical Journal. 85: 1442–1461. doi:10.1086/112820. ISSN 0004-6256.
  28. ^ Venugopal, V. R.; Ananthakrishnan, S.; Swarup, G.; Pynzar, A. V.; Udaltsov, V. A. (1985-08-01). "Structure of PKS 1148-001". Monthly Notices of the Royal Astronomical Society. 215: 685–689. doi:10.1093/mnras/215.4.685. ISSN 0035-8711.
  29. ^ Kellermann, K. I.; Pauliny-Toth, I. I. K.; Tyler, W. C. (1968-06-01). "Measurements of the flux density of discrete radio sources at centimeter wawelengths. I. Observations at 2695 MHz. (11.3cm)". The Astronomical Journal. 73: 298–309. doi:10.1086/110632. ISSN 0004-6256.
  30. ^ Morabito, D. D.; Niell, A. E.; Preston, R. A.; Linfield, R. P.; Wehrle, A. E.; Faulkner, J. (1986-05-01). "VLBI observations of 416 extragalactic radio sources". The Astronomical Journal. 91: 1038–1050. doi:10.1086/114080. ISSN 0004-6256.
  31. ^ Walter, H. G.; West, R. M. (1986-02-01). "Optical Astrometry of Extragalactic Radio Sources". Astronomy and Astrophysics. 156: 1–7. ISSN 0004-6361.
  32. ^ Sofue, Y.; Fujimoto, M.; Kawabata, K. (1979-01-01). "Intergalactic magnetic fields and Faraday rotation of extragalactic radio sources". Publications of the Astronomical Society of Japan. 31: 125–142. ISSN 0004-6264.
  33. ^ Wall, J. V.; Peacock, J. A. (1985-09-01). "Bright extragalactic radio sources at 2.7 GHz- III. The all-sky catalogue". Monthly Notices of the Royal Astronomical Society. 216: 173–192. doi:10.1093/mnras/216.2.173. ISSN 0035-8711.
  34. ^ Carvalho, J. C. (1985-09-01). "Magneto-ionic content of compact extragalactic radio sources". Astronomy and Astrophysics. 150: 129–132. ISSN 0004-6361.
  35. ^ Hintzen, P.; Ulvestad, J.; Owen, F. (1983-06-01). "Are wide-angle radio-tail QSOs members of clusters of galaxies ? I. VLA maps at 20 CM of 117 radio quasars". The Astronomical Journal. 88: 709–758. doi:10.1086/113363. ISSN 0004-6256.
  36. ^ Wang, Ran; Wu, Xue-Bing; Kong, Min-Zhi (2006-07-01). "The Black Hole Fundamental Plane from a Uniform Sample of Radio and X-Ray-emitting Broad-Line AGNs". The Astrophysical Journal. 645: 890–899. doi:10.1086/504401. ISSN 0004-637X.